Integrating Classification and Association Rule Mining

Knowledge Discovery and Data Mining(1998)

引用 3619|浏览666
暂无评分
摘要
Classification rule mining aims to discover a small set of rules in the database that forms an accurate classifier. Association rule mining finds all the rules existing in the database that satisfy some minimum support and minimum confidence constraints. For association rule mining, the target of discovery is not pre-determined, while for classification rule mining there is one and only one predetermined target. In this paper, we propose to integrate these two mining techniques. The integration is done by focusing on mining a special subset of association rules, called class association rules (CARs). An efficient algorithm is also given for building a classifier based on the set of discovered CARs. Experimental results show that the classifier built this way is, in general, more accurate than that produced by the state-of-the-art classification system C4.5. In addition, this integration helps to solve a number of problems that exist in the current classification systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要