KMT Theory Applied to Approximations of SDE
Springer Proceedings in Mathematics & StatisticsStochastic Analysis and Applications 2014(2014)
摘要
The dyadic method of Komlós, Major and Tusnády is a powerful way of constructing simultaneous normal approximations to a sequence of partial sums of i.i.d. random variables. We use a version of this KMT method to obtain order 1 approximation in a Vaserstein metric to solutions of vector SDEs under a mild non-degeneracy condition using an easily implemented numerical scheme.
更多查看译文
关键词
SDE, Numerical scheme, Vaserstein metric
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要