FASER’s Physics Reach for Long-Lived Particles

Physical review D/Physical review D(2019)

引用 300|浏览58
暂无评分
摘要
FASER,the ForwArd Search ExpeRiment,is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHC's high-energy collisions and travel long distances through concrete and rock without interacting. They may then decay to visible particles in FASER, which is placed 480 m downstream of the ATLAS interaction point. In this work we briefly describe the FASER detector layout and the status of potential backgrounds. We then present the sensitivity reach for FASER for a large number of long-lived particle models, updating previous results to a uniform set of detector assumptions, and analyzing new models. In particular, we consider all of the renormalizable portal interactions, leading to dark photons, dark Higgs bosons, and heavy neutral leptons (HNLs); light B-L and L_i - L_j gauge bosons; axion-like particles (ALPs) that are coupled dominantly to photons, fermions, and gluons through non-renormalizable operators; and pseudoscalars with Yukawa-like couplings. We find that FASER and its follow-up, FASER 2, have a full physics program, with discovery sensitivity in all of these models and potentially far-reaching implications for particle physics and cosmology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要