Design of Large Scale Sensors in 180 Nm CMOS Process Modified for Radiation Tolerance
Nuclear instruments and methods in physics research Section A, Accelerators, spectrometers, detectors and associated equipment/Nuclear instruments & methods in physics research Section A, Accelerators, spectrometers, detectors and associated equipment(2020)
Abstract
The last couple of years have seen the development of Depleted Monolithic Active Pixel Sensors (DMAPS) fabricated with a process modification to increase the radiation tolerance. Two large scale prototypes, Monopix with a column drain synchronous readout, and MALTA with a novel asynchronous architecture, have been fully tested and characterized both in the laboratory and in test beams. This showed that certain aspects have to be improved such as charge collection after irradiation and the output data rate. Some improvements resulting from extensive TCAD simulations were verified on a small test chip, Mini-MALTA. A detailed cluster analysis, using data from laboratory and test beam studies, at different biases, for high and low thresholds and before and after irradiation is presented, followed by detailed simulations showing that the digital architecture for both chips is capable of dealing with data rates of around 80 MHz/cm2 similar to what it is expected in the outer layer of the ATLAS inner tracker upgrade for the HL-LHC. The data rate capability and output bandwidth are studied using realistic hits generated by the ATLAS detector simulation framework.
MoreTranslated text
Key words
CMOS sensors,Tracking detectors,Monolithic sensors,MAPS,On-chip clustering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined