Study of excited $$\varvec{\varXi }$$ Ξ baryons with the $$\overline{\text{ P }}$$ P ¯ ANDA detector

G. Barucca,F. Davì,G. Lancioni,P. Mengucci,L. Montalto,P. P. Natali,N. Paone,D. Rinaldi,L. Scalise,B. Krusche,M. Steinacher,Z. Liu,C. Liu, B. Liu,X. Shen,S. Sun,G. Zhao,J. Zhao,M. Albrecht,W. Alkakhi,S. Bökelmann,S. Coen,F. Feldbauer,M. Fink,J. Frech,V. Freudenreich,M. Fritsch,J. Grochowski,R. Hagdorn,F. H. Heinsius,T. Held,T. Holtmann,I. Keshk,H. Koch,B. Kopf,M. Kümmel,M. Küßner,J. Li,L. Linzen,S. Maldaner,J. Oppotsch,S. Pankonin, M. Pelizä,S. Pflüger,J. Reher,G. Reicherz, C. Schnier,M. Steinke,T. Triffterer,C. Wenzel,U. Wiedner,H. Denizli,N. Er,U. Keskin,S. Yerlikaya,A. Yilmaz,R. Beck,V. Chauhan,C. Hammann,J. Hartmann,B. Ketzer,J. Müllers,B. Salisbury,C. Schmidt,U. Thoma,M. Urban,A. Bianconi,M. Bragadireanu,D. Pantea,M. Domagala,G. Filo,E. Lisowski,F. Lisowski,M. Michałek,P. Poznański,J. Płażek,K. Korcyl,P. Lebiedowicz,K. Pysz,W. Schäfer,A. Szczurek,M. Firlej,T. Fiutowski,M. Idzik,J. Moron,K. Swientek,P. Terlecki,G. Korcyl,R. Lalik,A. Malige,P. Moskal,K. Nowakowski,W. Przygoda,N. Rathod,P. Salabura,J. Smyrski,I. Augustin,R. Böhm,I. Lehmann,L. Schmitt,V. Varentsov,M. Al-Turany,A. Belias,H. Deppe,R. Dzhygadlo,H. Flemming,A. Gerhardt,K. Götzen,A. Heinz,P. Jiang,R. Karabowicz,S. Koch,U. Kurilla,D. Lehmann,J. Lühning,U. Lynen,H. Orth,K. Peters,G. Schepers,C. J. Schmidt,C. Schwarz,J. Schwiening,A. Täschner,M. Traxler,B. Voss,P. Wieczorek,V. Abazov,G. Alexeev,M. Yu. Barabanov,V. Kh. Dodokhov,A. Efremov,A. Fechtchenko,A. Galoyan,G. Golovanov,E. K. Koshurnikov,Y. Yu. Lobanov,A. G. Olshevskiy,A. A. Piskun,A. Samartsev,S. Shimanski,N. B. Skachkov,A. N. Skachkova,E. A. Strokovsky,V. Tokmenin,V. Uzhinsky,A. Verkheev,A. Vodopianov,N. I. Zhuravlev,D. Watts,M. Böhm,W. Eyrich,A. Lehmann,D. Miehling,M. Pfaffinger,K. Seth,T. Xiao,A. Ali,A. Hamdi,M. Himmelreich,M. Krebs,S. Nakhoul,F. Nerling,P. Gianotti,V. Lucherini,G. Bracco,S. Bodenschatz,K. T. Brinkmann,L. Brück,S. Diehl,V. Dormenev,M. Düren,T. Erlen,C. Hahn,A. Hayrapetyan,J. Hofmann,S. Kegel,F. Khalid,I. Köseoglu, A. Kripko,W. Kühn,V. Metag,M. Moritz,M. Nanova,R. Novotny,P. Orsich,J. Pereira-de-Lira,M. Sachs,M. Schmidt,R. Schubert,M. Strickert,T. Wasem,H. G. Zaunick,E. Tomasi-Gustafsson,D. Glazier,D. Ireland,B. Seitz,R. Kappert,M. Kavatsyuk,H. Loehner,J. Messchendorp,V. Rodin,K. Kalita,G. Huang,D. Liu,H. Peng,H. Qi, Y. Sun,X. Zhou, M. Kunze,K. Azizi,A. T. Olgun,Z. Tavukoglu,A. Derichs,R. Dosdall,W. Esmail,A. Gillitzer,F. Goldenbaum,D. Grunwald,L. Jokhovets,J. Kannika,P. Kulessa,S. Orfanitski,G. Pérez-Andrade,D. Prasuhn,E. Prencipe,J. Pütz,J. Ritman,E. Rosenthal,S. Schadmand,R. Schmitz,A. Scholl,T. Sefzick,V. Serdyuk,T. Stockmanns,D. Veretennikov,P. Wintz,P. Wüstner,H. Xu,Y. Zhou,X. Cao, Q. Hu,Y. Liang,V. Rigato,L. Isaksson,P. Achenbach,O. Corell,A. Denig,M. Distler,M. Hoek,W. Lauth,H. H. Leithoff,H. Merkel,U. Müller,J. Petersen,J. Pochodzalla,S. Schlimme,C. Sfienti,M. Thiel,S. Bleser,M. Bölting,L. Capozza,A. Dbeyssi,A. Ehret,R. Klasen, R. Kliemt,F. Maas,C. Motzko,O. Noll,D. Rodríguez Piñeiro,F. Schupp,M. Steinen,S. Wolff,I. Zimmermann,D. Kazlou,M. Korzhik,O. Missevitch,P. Balanutsa,V. Chernetsky,A. Demekhin,A. Dolgolenko,P. Fedorets,A. Gerasimov,A. Golubev,A. Kantsyrev,D. Y. Kirin,N. Kristi,E. Ladygina,E. Luschevskaya,V. A. Matveev,V. Panjushkin,A. V. Stavinskiy,A. Balashoff,A. Boukharov,M. Bukharova,O. Malyshev,E. Vishnevsky,D. Bonaventura,P. Brand,B. Hetz,N. Hüsken,J. Kellers,A. Khoukaz,D. Klostermann,C. Mannweiler,S. Vestrick,D. Bumrungkoh,C. Herold,K. Khosonthongkee,C. Kobdaj,A. Limphirat,K. Manasatitpong,T. Nasawad,S. Pongampai,T. Simantathammakul,P. Srisawad,N. Wongprachanukul,Y. Yan,C. Yu, X. Zhang,W. Zhu, E. Antokhin,A. Yu. Barnyakov,K. Beloborodov, V. E. Blinov,I. A. Kuyanov,S. Pivovarov,E. Pyata,Y. Tikhonov,A. E. Blinov,S. Kononov,E. A. Kravchenko,M. Lattery,G. Boca,D. Duda,M. Finger,A. Kveton,M. Pesek,M. Peskova,I. Prochazka,M. Slunecka,M. Volf,P. Gallus,V. Jary,O. Korchak,M. Marcisovsky,G. Neue,J. Novy,L. Tomasek,M. Tomasek,M. Virius,V. Vrba,V. Abramov,S. Bukreeva,S. Chernichenko,A. Derevschikov,V. Ferapontov,Y. Goncharenko,A. Levin,E. Maslova,Y. Melnik,A. Meschanin,N. Minaev,V. Mochalov,V. Moiseev, D. Morozov,L. Nogach,S. Poslavskiy,A. Ryazantsev,S. Ryzhikov,P. Semenov,I. Shein,A. Uzunian,A. Vasiliev,A. Yakutin,S. Belostotski,G. Fedotov, A. Izotov,S. Manaenkov,O. Miklukho,M. Preston,P. E. Tegner,D. Wölbing,B. Cederwall,K. Gandhi,A. K. Rai,S. Godre,V. Crede,S. Dobbs,P. Eugenio,D. Calvo,P. De Remigis,A. Filippi,G. Mazza,R. Wheadon,F. Iazzi,A. Lavagno,M. P. Bussa,S. Spataro,A. Akram,H. Calen,W. Ikegami Andersson,T. Johansson,A. Kupsc,P. Marciniewski,M. Papenbrock,J. Regina,J. Rieger, K. Schönning,M. Wolke,A. Chlopik,G. Kesik,D. Melnychuk,J. Tarasiuk,S. Wronka,B. Zwieglinski,C. Amsler,P. Bühler,J. Marton,S. Zimmermann

European Physical Journal A(2021)

引用 0|浏览24
暂无评分
摘要
The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards $$N^*$$\n and $$\\varDelta $$\n spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the $$N^*$$\n and $$\\varDelta $$\n spectra. The future antiproton experiment $$\\overline{\\text{ P }}$$\n ANDA will provide direct access to final states containing a $${\\overline{\\varXi }}\\varXi $$\n pair, for which production cross sections up to $$\\mu \\text{ b }$$\n are expected in $$\\bar{\\text{ p }}$$\n p reactions. With a luminosity of $$L=10^{31}$$\n cm\n $$^{-2}$$\n s\n $$^{-1}$$\n in the first phase of the experiment, the expected cross sections correspond to a production rate of $$\\sim 10^6\\, \\text{ events }/\\text{day }$$\n . With a nearly $$4\\pi $$\n detector acceptance, $$\\overline{\\text{ P }}$$\n ANDA will thus be a hyperon factory. In this study, reactions of the type $$\\bar{\\text{ p }}$$\n p $$\\rightarrow $$\n $${\\overline{\\varXi }}^{+}$$\n $$\\varXi ^{*-}$$\n as well as $$\\bar{\\text{ p }}$$\n p $$\\rightarrow $$\n $${\\overline{\\varXi }}^{*+}$$\n $$\\varXi ^{-}$$\n with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要