Chromatin accessibility analysis uncovers regulatory element landscape in prostate cancer progression
biorxiv(2020)
摘要
Aberrant oncogene functions and structural variation alter the chromatin structure in cancer cells. While gene regulation by chromatin states has been studied extensively, chromatin accessibility and its relevance in aberrant gene expression during prostate cancer progression is not well understood. Here, we report a genome-wide chromatin accessibility analysis of clinical tissue samples of benign prostatic hyperplasia (BPH), untreated primary prostate cancer (PC) and castration-resistant prostate cancer (CRPC) and integrative analysis with transcriptome, methylome, and proteome profiles of the same samples to uncover disease-relevant regulatory elements and their association to altered gene expression during prostate cancer progression. While promoter accessibility is consistent during disease initiation and progression, at distal sites chromatin accessibility is variable enabling transcription factors (TFs) binding patterns that are differently activated in different patients and disease stages. We identify consistent progression-related chromatin alterations during the progression to CRPC. By studying the TF binding patterns, we demonstrate the activation and suppression of androgen receptor-driven regulatory programs during PC progression and identify complementary TF regulatory modules characterized by e.g. MYC and glucocorticoid receptor. By correlation analysis we assign at least one putative regulatory region for 62% of genes and 85% of proteins differentially expressed during prostate cancer progression. Taken together, our analysis of the chromatin landscape in PC identifies putative regulatory elements for the majority of cancer-associated genes and characterizes their impact on the cancer phenotype.
### Competing Interest Statement
The authors have declared no competing interest.
更多查看译文
关键词
chromatin accessibility analysis uncovers,prostate cancer progression,prostate cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要