Finding a Suitable Class Distribution for Building Histological Images Datasets Used in Deep Model Training—The Case of Cancer Detection

Journal of Digital Imaging(2022)

引用 0|浏览12
暂无评分
摘要
The class distribution of a training dataset is an important factor which influences the performance of a deep learning-based system. Understanding the optimal class distribution is therefore crucial when building a new training set which may be costly to annotate. This is the case for histological images used in cancer diagnosis where image annotation requires domain experts. In this paper, we tackle the problem of finding the optimal class distribution of a training set to be able to train an optimal model that detects cancer in histological images. We formulate several hypotheses which are then tested in scores of experiments with hundreds of trials. The experiments have been designed to account for both segmentation and classification frameworks with various class distributions in the training set, such as natural, balanced, over-represented cancer, and over-represented non-cancer. In the case of cancer detection, the experiments show several important results: (a) the natural class distribution produces more accurate results than the artificially generated balanced distribution; (b) the over-representation of non-cancer/negative classes (healthy tissue and/or background classes) compared to cancer/positive classes reduces the number of samples which are falsely predicted as cancer (false positive); (c) the least expensive to annotate non-ROI (non-region-of-interest) data can be useful in compensating for the performance loss in the system due to a shortage of expensive to annotate ROI data; (d) the multi-label examples are more useful than the single-label ones to train a segmentation model; and (e) when the classification model is tuned with a balanced validation set, it is less affected than the segmentation model by the class distribution of the training set.
更多
查看译文
关键词
Computer-aided diagnosis,Medical information retrieval,Image segmentation and classification,Deep learning,Class-biased training,Class distribution analysis,Histological image
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要