Observation of Night-Time Emissions of the Earth in the Near UV Range from the International Space Station with the Mini-EUSO Detector
ASTRONOMY & ASTROPHYSICS(2024)
摘要
Observations of meteors in the Earth's atmosphere offer a unique tool for determining the flux of meteoroids that are too small to be detected by direct telescopic observations. Although these objects are routinely observed from ground-based facilities, such as meteor and fireball networks, space-based instruments come with notable advantages and have the potential to achieve a broad and uniform exposure. In this paper, we describe the first observations of meteor events with Mini-EUSO, a very wide field-of-view telescope launched in August 2019 from the Baikonur cosmodrome and installed on board the Russian Zvezda module of the International Space Station. Mini-EUSO can map the night-time Earth in the near-UV range (290 -- 430 nm) with a field of view equal to 44$^ circ $ times 44$^ circ $ and a spatial resolution of about 4.7 km at an altitude of 100 km from the ground. The detector saves triggered transient phenomena with a sampling frequency of 2.5 upmu s and 320 upmu s, as well as a continuous acquisition at 40.96 ms scale that is suitable for meteor observations. We designed two dedicated and complementary trigger methods, together with an analysis pipeline able to estimate the main physical parameters of the observed population of meteors, such as the duration, horizontal speed, azimuth, and absolute magnitude. To compute the absolute flux of meteors from Mini-EUSO observations, we implemented a simulation framework able to estimate the detection efficiency as a function of the meteor magnitude and the background illumination conditions. The instrument detected 24 thousand meteors within the first 40 data-taking sessions from November 2019 to August 2021, for a total observation time of approximately 6 days with a limiting absolute magnitude of +6. Our estimation of the absolute flux density of meteoroids in the range of mass between $10^ $ kg to $10^ $ kg was found to be comparable to other results available in the literature. The results of this work prove the potential for space-based observations to increase the statistics of meteor observations achievable with instruments operating on the ground. The slope of the mass distribution of meteoroids sampled with Mini-EUSO suggests a mass index of either $s = 2.09 0.02$ or $s = 2.31 0.03$, according to two different methodologies for the computation of the pre-atmospheric mass starting from the luminosity of each event.
更多查看译文
关键词
Mini-EUSO,JEM-EUSO,UV emissions,Terrestrial emissions,ISS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要