Search for Dark Matter-Nucleon Interactions Via Migdal Effect with DarkSide-50
arxiv(2022)
摘要
Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^2 mass dark matter. We present new constraints for sub-GeV/c^2 dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12306 ± 184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^2. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^2.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要