Exploring the Impacts of Service Life of Biological Activated Carbon on Dissolved Organic Nitrogen Removal.
ENVIRONMENTAL POLLUTION(2023)
摘要
The biological activated carbon (BAC) process has been widely used in drinking water treatment to improve the removal of pollutants, including the precursors of nitrogenous disinfection byproducts (N-DBPs). Nevertheless, old BAC filter effluent DON concentration is heightened, increasing the highly toxic N-DBPs formation potential. Herein, the variation of dissolved organic nitrogen (DON) was comprehensively explored during one backwashing cycle, focusing on four BAC age (0.3, 2, 5, and 10 years) for BAC filters in drinking water. Comparatively, the removal rate of DON by four BAC followed the order 0.3-yr BAC (39.69%-66.96%) >2-yr BAC (10.10%-39.78%) >5-yr BAC (-4.18%-29.63%)>10-yr BAC (-20.88%-19.87%). When at day 7 after backwashing, 10-yr BAC filter effluent increased at least 13.71% of DON and considerably elevated the N-DBPs formation potential, which was attributed to the ultimate production of more various proteins/amino sugars-like compounds by microbes. In comparisons of microbial community between all BAC samples, Rhizobials were more prevalent in 10-yr BAC and could produce microbe-derived DON associated with amino acids. Moreover, microbes regulated metabolic pathways, including amino acid biosynthesis, TCA cycle, purine metabolism, and pyrimidine metabolism, to enhance the adaptive cellular machinery in response to environmental stressors, and therefore accelerated microbial secretion of microbe-derived DON. Structural equation model (SEM) analysis investigated that BAC age had bio-effects on N-DBPs formation potential, which were delivered via the linkage of " BAC age, microbial community, microbial metabolism, and DON molecular characteristics". Our findings demonstrate the necessity of reconsidering the feasibility of BAC filters for long-time operation, which has implications for future N-DBPs precursors control in drinking water.
更多查看译文
关键词
Biological activated carbon (BAC),Dissolved organic nitrogen (DON),Nitrogenous disinfection by-products (N-DBPs),Molecular properties,Metabolites,Drinking water
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要