Interpretable Machine Learning Methods Applied to Jet Background Subtraction in Heavy Ion Collisions
Physical review C(2023)
摘要
Jet measurements in heavy ion collisions can provide constraints on the properties of the quark gluon plasma, but the kinematic reach is limited by a large, fluctuating background. We present a novel application of symbolic regression to extract a functional representation of a deep neural network trained to subtract background from jets in heavy ion collisions. We show that the deep neural network is approximately the same as a method using the particle multiplicity in a jet. This demonstrates that interpretable machine learning methods can provide insight into underlying physical processes.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要