Development of a phosphorous-based biorefinery process for producing lignocellulosic functional materials from coconut wastes

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2023)

引用 1|浏览6
暂无评分
摘要
This work aimed to develop a phosphorous-based biorefinery process for obtaining phosphorylated lignocellulosic fractions in a one-pot protocol from coconut fiber. Natural coconut fiber (NCF) was mixed with 85 % m/m H3PO4 at 70 degrees C for 1 h to yield the modified coconut fiber (MCF), aqueous phase (AP), and coconut fiber lignin (CFL). MCF was characterized by its TAPPI, FTIR, SEM, EDX, TGA, WCA, and P content. AP was characterized regarding its pH, conductivity, glucose, furfural, HMF, total sugars and ASL contents. CFL structure was evaluated by FTIR, 1H, 31P and 1H-13C HSQC NMR, TGA and P content and was compared to that of milled wood lignin (MWL). It was observed that MCF and CFL were phosphorylated during the pulping (0.54 and 0.23 % wt., respectively), while AP has shown high sugar levels, low inhibitor content, and some remaining phosphorous. The phosphorylation of MCF and CFL also showed an enhancement of their thermal and thermo-oxidative properties. The results show that a platform of functional materials such as biosorbents, biofuels, flame retardants, and biocomposites can be created through an eco-friendly, simple, fast, and novel biorefinery process.
更多
查看译文
关键词
Downstream processing, Biomass valorization, Lignin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要