Precision Spectroscopy and Laser Cooling Scheme of a Radium-Containing Molecule

NATURE PHYSICS(2024)

Cited 0|Views21
No score
Abstract
Molecules containing heavy radioactive nuclei are predicted to be extremely sensitive to violations of the fundamental symmetries of nature. The nuclear octupole deformation of certain radium isotopes massively boosts the sensitivity of radium monofluoride molecules to symmetry-violating nuclear properties. Moreover, these molecules are predicted to be laser coolable. Here we report measurements of the rovibronic structure of radium monofluoride molecules, which allow the determination of their laser cooling scheme. We demonstrate an improvement in resolution of more than two orders of magnitude compared to the state of the art. Our developments allowed measurements of minuscule amounts of hot molecules, with only a few hundred per second produced in a particular rotational state. The combined precision and sensitivity achieved in this work offer opportunities for studies of radioactive molecules of interest in fundamental physics, chemistry and astrophysics. Measurements of the rovibronic structure of radium monofluoride molecules allow the identification of a laser cooling scheme. This will enable precise tests of fundamental physics, such as searches for parity or time-reversal symmetry violation.
More
Translated text
Key words
Nuclear Structure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined