Lemon-derived carbon dots as antioxidant and light emitter in fluorescent films applied to nanothermometry
Journal of colloid and interface science(2023)
Abstract
The design of luminescent nanomaterials for the development of nanothermometers with high sensitivity and free of potentially toxic metals has developed in several fields, such as optoelectronics, sensors, and bioimaging. In addition, luminescent nanothermometers have advantages related to non-invasive measurement, with their wide detection range and high spatial resolution at the nano/microscale. Our study is the first, to our knowledge, to demonstrate a detailed study of a fluorescent film (Film-L) thermal sensor based on carbon dots derived from lemon bagasse extract (CD-L). The CD-L properties were explored as an antioxidant agent; their cytotoxicity was evaluated by using a human non-tumoral skin fibroblast (HFF-1) cell line from an MTT assay. The CD-L were characterized by HRTEM, DLS, FTIR, UV-VIS, and fluorescence spectroscopy. These confirmed their particle size distribution below 10 nm, graphitic structure in the core and surface organic groups, and strong blue emission. The CD-L showed cytocompatibility behavior and scavenging potential reactive species of biological importance: O2 & BULL; and HOCl, with IC50 of 276.8 & PLUSMN; 4.0 and 21.6 & PLUSMN; 0.7, respectively. The Film-L emission intensities (I425 nm) are temperature-dependent in the 298 to 333 K range. The Film-L luminescent thermometer shows a maximum relative thermal sensitivity of 2.69 % K-1 at 333 K.
MoreTranslated text
Key words
Biomass,Carbon dots,Antioxidant,Nanothermometer,Film
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined