First Probe of Sub-GeV Dark Matter Beyond the Cosmological Expectation with the COHERENT CsI Detector at the SNS
PHYSICAL REVIEW LETTERS(2023)
摘要
The COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220 MeV/c(2) using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9 keV(nr). No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei. The cross section for this process is orders of magnitude higher than for other processes historically used for accelerator-based direct-detection searches so that our small, 14.6 kg detector significantly improves on past constraints. At peak sensitivity, we reject the flux consistent with the cosmologically observed dark-matter concentration for all coupling constants alpha(D) < 0.64, assuming a scalar dark-matter particle. We also calculate the sensitivity of future COHERENT detectors to dark-matter signals which will ambitiously test multiple dark-matter spin scenarios.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要