Phosphorus Doped Molybdenum Disulfide Regulated by Sodium Chloride for Advanced Supercapacitor Electrodes.

Dalton transactions(2023)

引用 0|浏览9
暂无评分
摘要
As a pseudocapacitor electrode material, molybdenum disulfide (MoS2) usually shows inferior capacity, rate capability and cyclability. Structural regulation and heteroatom doping are the available methods to ameliorate the electrochemical properties of MoS2. Herein, phosphorus doped molybdenum disulfide regulated by sodium chloride (SP-MoS2) is successfully synthesized using phosphomolybdate acid as a molybdenum source and an in situ dopant and sodium chloride (NaCl) as a structural regulator. Under the structural regulation of NaCl, the SP-MoS2 nanosheets exhibit an interweaved architecture with a large interlayer spacing of 0.68 nm. Owing to the in situ P doping and large specific surface area (21.0 m2 g-1), the SP-MoS2 electrode possesses a maximum capacity of 564.8 F g-1 at 1 A g-1 and retains 56.3% of the original capacity at 20 A g-1. Density functional theory (DFT) calculations indicate that SP-MoS2 displays a high K+ average adsorption energy of -3.636 eV. In addition, the fabricated SP-MoS2//AC asymmetric supercapacitor device displays an energy density of 22.8 W h kg-1 at 759 W kg-1. Interweaved SP-MoS2 nanosheets possessed a more negative K+ average adsorption energy and exhibited superior specific capacitance and rate capability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要