Evaluation of Precopulatory Pairing Behaviour and Male Fertility in a Marine Amphipod Exposed to Plastic Additives.

Environmental pollution(2024)

引用 0|浏览22
暂无评分
摘要
Plastics contain a mixture of chemical additives that can leach into the environment and potentially cause harmful effects on reproduction and the endocrine system. Two of these chemicals, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP), are among the top 30 organic chemicals detected in surface and groundwater and are currently placed on international watchlist for evaluation. Although bans have been placed on legacy pollutants such as diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), their persistence remains a concern. This study aimed to examine the impact of plastic additives, including NBBS, TPHP, DBP, and DEHP, on the reproductive behaviour and male fertility of the marine amphipod Echinogammarus marinus. Twenty precopulatory pairs of E. marinus were exposed to varying concentrations of the four test chemicals to assess their pairing behaviour. A high-throughput methodology was developed and optimised to record the contact time and re-pair time within 15 min and additional point observations for 96 h. The study found that low levels of NBBS, TPHP, and DEHP prolonged the contact and re-pairing time of amphipods and the proportion of pairs reduced drastically with re-pairing success ranging from 75% to 100% in the control group and 0%-85% in the exposed groups at 96 h. Sperm count declined by 40% and 60% in the 50 mu g/l and 500 mu g/l DBP groups, respectively, whereas TPHP resulted in significantly lower sperms in 50 mu g/l exposed group. Animals exposed to NBBS and DEHP showed high interindividual variability in all exposed groups. Overall, this study provides evidence that plastic additives can disrupt the reproductive mechanisms and sperm counts of amphipods at environmentally relevant concentrations. Our research also demonstrated the usefulness of the precopulatory pairing mechanism as a sensitive endpoint in ecotoxicity assessments to proactively mitigate population-level effects in the aquatic environment.
更多
查看译文
关键词
Plastic additives,Reproduction,Precopulatory pairing,Sperm count,Crustacean
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要