The Composition of Saturn's Rings

Space Science Reviews(2024)

引用 0|浏览45
暂无评分
摘要
The origin and evolution of Saturn's rings is critical to understanding the Saturnian system as a whole. Here, we discuss the physical and chemical composition of the rings, as a foundation for evolutionary models described in subsequent chapters. We review the physical characteristics of the main rings, and summarize current constraints on their chemical composition. Radial trends are observed in temperature and to a limited extent in particle size distribution, with the C ring exhibiting higher temperatures and a larger population of small particles. The C ring also shows evidence for the greatest abundance of silicate material, perhaps indicative of formation from a rocky body. The C ring and Cassini Division have lower optical depths than the A and B rings, which contributes to the higher abundance of the exogenous neutral absorber in these regions. Overall, the main ring composition is strongly dominated by water ice, with minor silicate, UV absorber, and neutral absorber components. Sampling of the innermost D ring during Cassini's Grand Finale provides a new set of in situ constraints on the ring composition, and we explore ongoing work to understand the linkages between the main rings and the D ring. The D ring material is organic- and silicate-rich and water-poor relative to the main rings, with a large population of small grains. This composition may be explained in part by volatile losses in the D ring, and current constraints suggest some degree of fractionation rather than sampling of the bulk D ring material.
更多
查看译文
关键词
Ring particle composition,mixing and particle size distribution,Ring radial and vertical structure,Ring atmosphere
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要