Generic Multi-Particle Transverse Momentum Correlations As a New Tool for Studying Nuclear Structure at the Energy Frontier
EUROPEAN PHYSICAL JOURNAL A(2024)
摘要
The mean transverse momentum of produced particles, [p_T ] , and its event-by-event fluctuations give direct access to the initial conditions of ultra-relativistic heavy-ion collisions and help probe the colliding nuclei’s structure. The [p_T ] fluctuations can be studied via multi-particle p_T correlations; so far, only the lowest four orders have been studied. Higher-order fluctuations can provide stronger constraints on the initial conditions and improved sensitivity to the detailed nuclear structure; however, their direct implementation can be challenging and is still lacking. In this paper, we apply a generic recursive algorithm for the genuine multi-particle p_T correlations, which enables the accurate study of higher-order [p_T ] fluctuations without heavy computational cost for the first time. With this algorithm, we will examine the power of multi-particle p_T correlations through Monte Carlo model studies with different nuclear structures. The impact on the nuclear structure studies, including the nuclear deformation and triaxial structure, will be discussed. These results demonstrate the usefulness of multi-particle p_T correlations for studying nuclear structure in high-energy nuclei collisions at RHIC and the LHC, which could serve as a complementary tool to existing low-energy nuclear structure studies.
更多查看译文
关键词
Particle Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要