Uncrewed aerial vehicle radiometric calibration: A comparison of autoexposure and fixed‐exposure images
Plant Phenome Journal(2023)
摘要
Abstract Remote sensing with uncrewed aerial vehicles (UAVs) is increasingly being used in agriculture to provide data on the physical characteristics of plants under field conditions. Data accuracy is critical for decision making with a high degree of confidence. In this work, we compared two multispectral camera calibration methods for image data collected with a UAV: (1) an autoexposure method that relies on a single calibration panel and a post hoc calibration, and (2) a fixed‐exposure system that uses three in‐field gray calibration panels using the empirical line calibration method. Both methods were compared to reflectance data from (a) four ground calibration targets measured with a spectroradiometer and (b) a single manned aircraft image calibrated with commercial calibration tarps. In a band‐by‐band comparison, the autoexposure method produced almost twice as much radiometric error on average compared with fixed exposure. Because remote sensing data are commonly converted to spectral indices, the calibration methods were also evaluated by calculating the visible atmospherically resistant index (VARI) and comparing the resulting data to the manned aircraft image. Similarly, the autoexposure method in this case produced twice the error of the fixed‐exposure method. The effect of the error was considered in a production agriculture context by simulating a remote sensing‐based prescription map for pesticide application in a cotton (Gossypium) field and calculating the number of mislabeled management zones. The simulation showed that the autoexposure method would be more costly to the farm because of its higher error, roughly $8.00/ha based on the assumptions made.
更多查看译文
关键词
calibration,autoexposure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要