Xylose- and Nucleoside-Based Polymers Via Thiol-ene Polymerization Toward Sugar-Derived Solid Polymer Electrolytes.

ACS APPLIED POLYMER MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
A series of copolymers have been prepared via thiol-ene polymerization of bioderived α,ω-unsaturated diene monomers with dithiols toward application as solid polymer electrolytes (SPEs) for Li+-ion conduction. Amorphous polyesters and polyethers with low Tg's (-31 to -11 °C) were first prepared from xylose-based monomers (with varying lengths of fatty acid moiety) and 2,2'-(ethylenedioxy)diethanethiol (EDT). Cross-linking by incorporation of a trifunctional monomer also produced a series of SPEs with ionic conductivities up to 2.2 × 10-5 S cm-1 at 60 °C and electrochemical stability up to 5.08 V, a significant improvement over previous xylose-derived materials. Furthermore, a series of copolymers bearing nucleoside moieties were prepared to exploit the complementary base-pairing interaction of nucleobases. Flexible, transparent, and reprocessable SPE films were thus prepared with improved ionic conductivity (up to 1.5 × 10-4 S cm-1 at 60 °C), hydrolytic degradability, and potential self-healing capabilities.
更多
查看译文
关键词
Polymer Electrolytes,Conducting Polymers,Nano-composites,Solid-State Electrolytes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要