Correction of the baseline fluctuations in the GEM-based ALICE TPC

J. Alme,T. Alt,C. Andrei,V. Anguelov,H. Appelshaeuser,M. Arslandok,G. G. Barnafoldi,E. Bartsch,P. Becht,R. Bellwied,A. Berdnikova,N. Bialas, P. Bialas,S. Biswas, B. Blidaru,L. Boldizsar,L. Bratrud, P. Braun-Munzinger,M. Bregant,C. L. Britton, S. Brucker,E. J. Brucken,H. Buesching,R. Soto Camacho,A. J. Castro,P. Chatzidaki,P. Christiansen,L. G. Clonts,T. M. Cormier,P. Dhankher, S. Dittrich,R. Ehlers,M. N. Ericson,N. B. Ezell,L. Fabbietti,F. Flor, J. J. Gaardhje,M. G. Munhoz,C. Garabatos,P. Gasik, T. Geiger,A. Gera,P. Glaessel,D. J. Q. Goh,A. Grein, T. Gundem,T. Gunji,M. Habib,H. Hamagaki,G. Hamar, J. C. Hansen,J. W. Harris,P. Hauer,S. Hayashi,J. Hehner, J. K. Heino,E. Hellbaer,H. Helstrup, M. Hemmer,A. Herghelegiu, R. A. Hernandez,H. D. Hernandez Herrera,T. E. Hilden,C. Hughes, S. Hummel,M. Ivanov, J. Jaeger,J. Jung,M. Jung, E. Kangasaho,B. Ketzer,S. Kirsch,M. Kleiner,T. Klemenz,A. G. Knospe,M. Kowalski,L. Kreis,M. Krueger, N. Kupfer, R. Lang,L. Lautner, M. Lesch,Y. Lesenechal, F. Liebske,C. Lippmann,R. D. Majka,C. Markert,T. A. Martins,S. Masciocchi,O. Matonoha,A. Matyja,M. Meres,D. L. Mihaylov,D. Miskowiec, T. Mittelstaedt,C. Mordasini,T. Morhardt, S. Muley,J. Mulligan,R. H. Munzer,H. Murakami,K. Muenning,A. Nassirpour,C. Nattrass,B. S. Nielsen, W. A. V. Noije,M. Ogino,A. C. Oliveira Da Silva,A. Oskarsson,K. Oyama,A. Onnerstad,L. Osterman,Y. Pachmayer,G. Paic,R. N. Patra,V. Peskov,M. Petris,M. Petrovici,M. Planinic,L. Prodan,A. Radu,J. Rasson,K. F. Read,A. Rehman, R. Renfordt, K. Red,D. Rohrich, E. Rubio,A. Rusu,B. C. S. Sanches,J. Schambach, S. Scheid,C. Schmidt, A. Schmier,K. Schweda,D. Sekihata, S. Siebig, R. W. D. Silva,D. Silvermyr,B. Sitar,N. Smirnov,H. K. Soltveit,S. P. Sorensen,J. Stachel,L. Serksnyte,G. Tambave,K. Ullaland,B. Ulukutlu,D. Varga,O. Vazquez Rueda,A. Velure,S. Vergara Limon, O. Vorbach,B. Voss, C. Weidlich,J. Wiechula,B. Windelband,S. Winkler

JOURNAL OF INSTRUMENTATION(2023)

引用 0|浏览33
暂无评分
摘要
To operate the ALICE Time Projection Chamber in continuous mode during the Run 3 and Run 4 data-taking periods of the Large Hadron Collider, the multi-wire proportional chamber-based readout was replaced with gas-electron multipliers. As expected, the detector performance is affected by the so-called common-mode effect, which leads to significant baseline fluctuations. A detailed study of the pulse shape with the new readout has revealed that it is also affected by ion tails. Since reconstruction and data compression are performed fully online, these effects must be corrected at the hardware level in the FPGA-based common readout units. The characteristics of the common-mode effect and of the ion tail, as well as the algorithms developed for their online correction, are described in this paper. The common-mode dependencies are studied using machine-learning techniques. Toy Monte Carlo simulations are performed to illustrate the importance of online corrections and to investigate the performance of the developed algorithms.
更多
查看译文
关键词
Charge transport and multiplication in gas,Electron multipliers (gas),Micropattern gaseous detectors (MSGC,GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc),Time projection Chambers (TPC)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要