Convergence Properties of New $$\alpha $$-Bernstein–kantorovich Type Operators

Indian Journal of Pure and Applied Mathematics(2024)

引用 0|浏览7
暂无评分
摘要
In the present paper, we introduce a new sequence of α - Bernstein-Kantorovich type operators, which fix constant and preserve Korovkin’s other test functions in a limiting sense. We extend the natural Korovkin and Voronovskaja type results into a sequence of probability measure spaces. Then, we establish the convergence properties of these operators using the Ditzian-Totik modulus of smoothness for Lipschitz-type space and functions with derivatives of bounded variations.
更多
查看译文
关键词
Positive linear operators,Rate of convergence,Modulus of continuity,-Bernstein type operators,41A25,41A36,41A30,26A15
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要