Constraints on the Finite Volume Two-Nucleon Spectrum at M_π≈ 806 MeV

arxiv(2024)

引用 0|浏览23
暂无评分
摘要
The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of m_π≈ 806 MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要