Dynamic Acoustic Optimization of Pulse Tube Refrigerators for Rapid Cooldown
NATURE COMMUNICATIONS(2024)
摘要
Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures. These refrigerators dominate the total power consumption of most modern cryostats, including those that reach millikelvin temperatures using additional cooling stages. In state-of-the-art commercial pulse tube refrigerators, the acoustic coupling between the driving compressor and the refrigerator is fixed and optimized for operation at base temperature. We show that this optimization is incorrect during the cooldown process, which results in wasted power consumption by the compressor and slow cooldown speed. After developing analytic expressions that demonstrate the need for acoustic tuning as a function of temperature, we dynamically optimize the acoustics of a commercial pulse tube refrigerator and show that the cooldown speed can be increased to 1.7 to 3.5 times the original value. Acoustic power measurements show that loss mechanism(s)-and not the capacity of the compressor-limit the maximum cooling available at high temperatures, suggesting that even faster cooldown speeds can be achieved in the future. This work has implications for the accessibility of cryogenic temperatures and the cadence of research in many disciplines such as quantum computing. Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures, including quantum computing. Here, the authors show that dynamically optimizing the acoustic parameters of the refrigerator can improve conventional cooldown speeds up to 3.5 times.
更多查看译文
关键词
Thermoacoustic,Performance Optimization,Optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要