Search for joint multimessenger signals from potential Galactic PeVatrons with HAWC and IceCube

R. Alfaro,C. Alvarez,J. C. Arteaga-Velázquez,D. Avila Rojas,H. A. Ayala Solares,R. Babu,E. Belmont-Moreno,K. S. Caballero-Mora,T. Capistrán,A. Carramiñana,S. Casanova,U. Cotti,J. Cotzomi,S. Coutiño de León,E. De la Fuente,D. Depaoli,N. Di Lalla,R. Diaz Hernandez,J. C. Díaz-Vélez,K. Engel,T. Ergin,K. L. Fan,K. Fang,N. Fraija, S. Fraija,J. A. García-González,F. Garfias,M. M. González,J. A. Goodman,S. Groetsch,J. P. Harding,S. Hernández-Cadena,I. Herzog,D. Huang,F. Hueyotl-Zahuantitla,P. Hüntemeyer,A. Iriarte,S. Kaufmann, J. Lee,H. León Vargas,A. L. Longinotti,G. Luis-Raya,K. Malone,J. Martínez-Castro,J. A. Matthews,P. Miranda-Romagnoli,J. A. Montes,E. Moreno,M. Mostafá,L. Nellen,N. Omodei, M. Osorio,Y. Pérez Araujo,E. G. Pérez-Pérez, C. D. Rho,D. Rosa-González,H. Salazar,D. Salazar-Gallegos,A. Sandoval,M. Schneider,J. Serna-Franco,A. J. Smith,Y. Son,O. Tibolla,K. Tollefson,I. Torres,R. Torres-Escobedo,R. Turner, F. Ureña-Mena,X. Wang,I. J. Watson,K. Whitaker,E. Willox,H. Wu,S. Yun-Cárcamo,H. Zhou,C. de León,R. Abbasi,M. Ackermann,J. Adams,S. K. Agarwalla,J. A. Aguilar,M. Ahlers,J. M. Alameddine,N. M. Amin,K. Andeen,C. Argüelles,Y. Ashida,S. Athanasiadou,L. Ausborm,S. N. Axani,X. Bai,A. Balagopal V.,M. Baricevic,S. W. Barwick,S. Bash,V. Basu,R. Bay,J. J. Beatty,J. Becker Tjus,J. Beise,C. Bellenghi,C. Benning,S. BenZvi,D. Berley,E. Bernardini,D. Z. Besson,E. Blaufuss,L. Bloom,S. Blot,F. Bontempo,J. Y. Book Motzkin,C. Boscolo Meneguolo,S. Böser,O. Botner,J. Böttcher,J. Braun,B. Brinson,J. Brostean-Kaiser,L. Brusa, R. T. Burley,D. Butterfield, M. A. Campana,I. Caracas,K. Carloni,J. Carpio,S. Chattopadhyay,N. Chau,Z. Chen,D. Chirkin,S. Choi,B. A. Clark,A. Coleman,G. H. Collin,A. Connolly,J. M. Conrad,P. Coppin,R. Corley,P. Correa,D. F. Cowen,P. Dave,C. De Clercq,J. J. DeLaunay,D. Delgado,S. Deng,A. Desai,P. Desiati,K. D. de Vries,G. de Wasseige,T. DeYoung,A. Diaz, J. C. Díaz-Vélez,P. Dierichs,M. Dittmer,A. Domi,L. Draper,H. Dujmovic,K. Dutta,M. A. DuVernois,T. Ehrhardt,L. Eidenschink,A. Eimer,P. Eller,E. Ellinger,S. El Mentawi,D. Elsässer,R. Engel,H. Erpenbeck,J. Evans,P. A. Evenson,K. Farrag,A. R. Fazely,A. Fedynitch,N. Feigl,S. Fiedlschuster,C. Finley,L. Fischer,D. Fox,A. Franckowiak,S. Fukami,P. Fürst,J. Gallagher,E. Ganster,A. Garcia,M. Garcia,G. Garg,E. Genton,L. Gerhardt,A. Ghadimi,C. Girard-Carillo,C. Glaser, T. Glüsenkamp,J. G. Gonzalez,S. Goswami,A. Granados,D. Grant,S. J. Gray,O. Gries,S. Griffin,S. Griswold,K. M. Groth,C. Günther,P. Gutjahr,C. Ha,C. Haack,A. Hallgren,L. Halve,F. Halzen,H. Hamdaoui,M. Ha Minh,M. Handt,K. Hanson,J. Hardin,A. A. Harnisch,P. Hatch,A. Haungs,J. Häußler,K. Helbing,J. Hellrung,J. Hermannsgabner,L. Heuermann,N. Heyer,S. Hickford,A. Hidvegi,C. Hill,G. C. Hill,K. D. Hoffman,S. Hori,K. Hoshina,M. Hostert,W. Hou,T. Huber,K. Hultqvist,M. Hünnefeld,R. Hussain,K. Hymon,A. Ishihara,W. Iwakiri,M. Jacquart,O. Janik, M. Jansson,G. S. Japaridze,M. Jeong,M. Jin,B. J. P. Jones,N. Kamp,D. Kang,W. Kang,X. Kang,A. Kappes,D. Kappesser,L. Kardum,T. Karg,M. Karl,A. Karle,A. Katil,U. Katz,M. Kauer,J. L. Kelley,M. Khanal,A. Khatee Zathul,A. Kheirandish,J. Kiryluk,S. R. Klein,A. Kochocki,R. Koirala,H. Kolanoski, T. Kontrimas,L. Köpke,C. Kopper,D. J. Koskinen,P. Koundal, M. Kovacevich,M. Kowalski,T. Kozynets,J. Krishnamoorthi,K. Kruiswijk,E. Krupczak,A. Kumar,E. Kun,N. Kurahashi,N. Lad,C. Lagunas Gualda,M. Lamoureux,M. J. Larson,S. Latseva,F. Lauber,J. P. Lazar, J. W. Lee,K. Leonard DeHolton,A. Leszczyńska,J. Liao,M. Lincetto,Y. T. Liu,M. Liubarska,E. Lohfink,C. Love,C. J. Lozano Mariscal,L. Lu,F. Lucarelli,W. Luszczak,Y. Lyu,J. Madsen,E. Magnus,K. B. M. Mahn,Y. Makino,E. Manao,S. Mancina,W. Marie Sainte,I. C. Mariş, S. Marka, Z. Marka,M. Marsee,I. Martinez-Soler, R. Maruyama,F. Mayhew,F. McNally,J. V. Mead,K. Meagher,S. Mechbal,A. Medina,M. Meier,Y. Merckx,L. Merten,J. Micallef,J. Mitchell,T. Montaruli,R. W. Moore,Y. Morii,R. Morse,M. Moulai,T. Mukherjee,R. Naab,R. Nagai,M. Nakos,U. Naumann,J. Necker,A. Negi,L. Neste,M. Neumann,H. Niederhausen, K. Noda,A. Noell,A. Novikov, A. Obertacke Pollmann,V. O'Dell,B. Oeyen,A. Olivas,R. Orsoe,J. Osborn,E. O'Sullivan,H. Pandya,N. Park,G. K. Parker,E. N. Paudel,L. Paul,C. Pérez de los Heros,T. Pernice,J. Peterson,S. Philippen,A. Pizzuto,M. Plum,A. Pontén,Y. Popovych,M. Prado Rodriguez,B. Pries,R. Procter-Murphy,G. T. Przybylski,C. Raab,J. Rack-Helleis,M. Ravn,K. Rawlins,Z. Rechav,A. Rehman,P. Reichherzer,E. Resconi,S. Reusch,W. Rhode,B. Riedel,A. Rifaie,E. J. Roberts,S. Robertson,S. Rodan,G. Roellinghoff,M. Rongen,A. Rosted,C. Rott,T. Ruhe,L. Ruohan,D. Ryckbosch,I. Safa,J. Saffer,P. Sampathkumar,A. Sandrock,M. Santander,S. Sarkar,S. Sarkar,J. Savelberg,P. Savina,P. Schaile,M. Schaufel,H. Schieler,S. Schindler,B. Schlüter,F. Schlüter,N. Schmeisser,T. Schmidt,J. Schneider,F. G. Schröder,L. Schumacher,S. Sclafani,D. Seckel,M. Seikh,M. Seo,S. Seunarine,P. Sevle Myhr,R. Shah,S. Shefali,N. Shimizu,M. Silva,B. Skrzypek,B. Smithers,R. Snihur,J. Soedingrekso,A. Søgaard, D. Soldin,P. Soldin,G. Sommani,C. Spannfellner,G. M. Spiczak,C. Spiering,M. Stamatikos,T. Stanev,T. Stezelberger,T. Stürwald,T. Stuttard,G. W. Sullivan,I. Taboada,S. Ter-Antonyan,A. Terliuk,M. Thiesmeyer,W. G. Thompson,J. Thwaites,S. Tilav,C. Tönnis,S. Toscano,D. Tosi, A. Trettin,R. Turcotte, J. P. Twagirayezu,M. A. Unland Elorrieta,A. K. Upadhyay,K. Upshaw,A. Vaidyanathan,N. Valtonen-Mattila,J. Vandenbroucke,N. van Eijndhoven,D. Vannerom,J. van Santen,J. Vara,J. Veitch-Michaelis,M. Venugopal,M. Vereecken,S. Verpoest,D. Veske,A. Vijai,C. Walck,A. Wang,C. Weaver,P. Weigel,A. Weindl,J. Weldert,A. Y. Wen,C. Wendt,J. Werthebach,M. Weyrauch,N. Whitehorn,C. H. Wiebusch,D. R. Williams,L. Witthaus,A. Wolf,M. Wolf, G. Wrede,X. W. Xu,J. P. Yanez,E. Yildizci,S. Yoshida,R. Young, S. Yu,T. Yuan,Z. Zhang,P. Zhelnin,P. Zilberman,M. Zimmerman

arxiv(2024)

引用 1|浏览48
暂无评分
摘要
Galactic PeVatrons are sources that can accelerate cosmic rays to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding ambient material or radiation, resulting in the production of gamma rays and neutrinos. To optimize for the detection of such associated production of gamma rays and neutrinos for a given source morphology and spectrum, a multi-messenger analysis that combines gamma rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework (3ML) with IceCube Maximum Likelihood Analysis software (i3mla) and HAWC Accelerated Likelihood (HAL) to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 years of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90 from the 22 sources. From the neutrino flux limit, we conclude that the gamma-ray emission from five of the sources can not be produced purely from hadronic interactions. We report the limit for the fraction of gamma rays produced by hadronic interactions for these five sources.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要