Surprising New Dynamics Phenomena in Diels–Alder Reaction of C60 Uncovered with AI

The Journal of organic chemistry(2024)

引用 0|浏览4
暂无评分
摘要
We performed an extensive artificial intelligence-accelerated quasi-classical molecular dynamics investigation of the time-resolved mechanism of the Diels-Alder reaction of fullerene C60 with 2,3-dimethyl-1,3-butadiene. In a substantial fraction (10%) of reactive trajectories, the larger C60 noncovalently attracts the 2,3-dimethyl-1,3-butadiene long before the barrier so that the diene undergoes the series of complex motions including roaming, somersaults, twisting, and twisting somersaults around the fullerene until it aligns itself to pass over the barrier. These complicated processes could be easily missed in typically performed quantum chemical simulations with shorter and fewer trajectories. After the barrier is passed, the bonds take longer to form compared to the simplest prototypical Diels-Alder reaction of ethene with 1,3-butadiene despite high similarities in transition states and barrier widths evaluated with intrinsic reaction coordinate (IRC) calculations. C60 is mainly responsible for these differences as its reaction with 1,3-butadiene is similar to the reaction with 2,3-dimethyl-1,3-butadiene: the only substantial difference being that the extra methyl groups double the probability of the prolonged alignment phase in dynamics. These additional calculations of C60 with 1,3-butadiene could be performed via active learning more easily by reusing the data generated for the other two reactions, showing the potential for larger-scale exploration of the effects of different substrates in the same types of reactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要