AbstractThe specific activity of the $$\beta $$ β decay of $$^{39}$$ 39 Ar in atmospheric argon is measured using the DEAP-3600 detector. DEAP-3600, located 2 km underground at SNOLAB, uses a total of (3269 ± 24) kg of liquid argon distilled from the atmosphere to search for dark matter. This detector is well-suited to measure the decay of $$^{39}$$ 39 Ar owing to its very low background levels. This is achieved in two ways: it uses low background construction materials; and it uses pulse-shape discrimination to differentiate between nuclear recoils and electron recoils. With 167 live-days of data, the measured specific activity at the time of atmospheric extraction is (0.964 ± 0.001$$_\textrm{stat}$$ stat ± 0.024$$_\textrm{sys}$$ sys ) Bq/kg$$_\textrm{atmAr}$$ atmAr , which is consistent with results from other experiments. A cross-check analysis using different event selection criteria and a different statistical method confirms the result.