Symmetry Classes of Classical Stochastic Processes
arxiv(2024)
摘要
We perform a systematic symmetry classification of the Markov generators of classical stochastic processes. Our classification scheme is based on the action of involutive symmetry transformations of a real Markov generator, extending the Bernard-LeClair scheme to the arena of classical stochastic processes and leading to a set of up to fifteen allowed symmetry classes. We construct families of solutions of arbitrary matrix dimensions for five of these classes with a simple physical interpretation of particles hopping on multipartite graphs. In the remaining classes, such a simple construction is prevented by the positivity of entries of the generator particular to classical stochastic processes, which imposes a further requirement beyond the usual symmetry classification constraints. We partially overcome this difficulty by resorting to a stochastic optimization algorithm, finding specific examples of generators of small matrix dimensions in six further classes, leaving the existence of the final four allowed classes an open problem. Our symmetry-based results unveil new possibilities in the dynamics of classical stochastic processes: Kramers degeneracy of eigenvalue pairs, dihedral symmetry of the spectra of Markov generators, and time reversal properties of stochastic trajectories and correlation functions.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要