Quantum Coherence of a Long-Lifetime Exciton-Polariton Condensate
arxiv(2024)
摘要
In recent years, quantum information science has made significant progress, leading to a multitude of quantum protocols for the most diverse applications. States carrying resources such as quantum coherence are a key component for these protocols. In this study, we optimize the quantum coherence of a nonresonantly excited exciton-polariton condensate of long living polaritons by minimizing the condensate's interaction with the surrounding reservoir of excitons and free carriers. By combining experimental phase space data with a displaced thermal state model, we observe how quantum coherence builds up as the system is driven above the condensation threshold. Our findings demonstrate that a spatial separation between the condensate and the reservoir enhances the state's maximum quantum coherence directly beyond the threshold. These insights pave the way for integrating polariton systems into hybrid quantum devices and advancing applications in quantum technologies.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要