Real-Time Detection of Microplastics Using an AI Camera

SENSORS(2024)

引用 0|浏览0
暂无评分
摘要
Microplastics (MPs, size ≤ 5 mm) have emerged as a significant worldwide concern, threatening marine and freshwater ecosystems, and the lack of MP detection technologies is notable. The main goal of this research is the development of a camera sensor for the detection of MPs and measuring their size and velocity while in motion. This study introduces a novel methodology involving computer vision and artificial intelligence (AI) for the detection of MPs. Three different camera systems, including fixed-focus 2D and autofocus (2D and 3D), were implemented and compared. A YOLOv5-based object detection model was used to detect MPs in the captured image. DeepSORT was then implemented for tracking MPs through consecutive images. In real-time testing in a laboratory flume setting, the precision in MP counting was found to be 97%, and during field testing in a local river, the precision was 96%. This study provides foundational insights into utilizing AI for detecting MPs in different environmental settings, contributing to more effective efforts and strategies for managing and mitigating MP pollution.
更多
查看译文
关键词
artificial intelligence (AI),DeepSORT,environmental monitoring,freshwater ecosystems,machine vision,microplastics (MPs),object detection,underwater detection,YOLOv5
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要