The NANOGrav 15 yr Data Set: Running of the Spectral Index

Gabriella Agazie,Akash Anumarlapudi,Anne M. Archibald,Zaven Arzoumanian, Jeremy George Baier,Paul T. Baker,Bence Bécsy,Laura Blecha,Adam Brazier,Paul R. Brook, Sarah Burke-Spolaor,J. Andrew Casey-Clyde,Maria Charisi,Shami Chatterjee,Tyler Cohen,James M. Cordes,Neil J. Cornish, Fronefield Crawford,H. Thankful Cromartie,Kathryn Crowter,Megan E. DeCesar,Paul B. Demorest,Heling Deng,Lankeswar Dey,Timothy Dolch, David Esmyol,Elizabeth C. Ferrara,William Fiore,Emmanuel Fonseca,Gabriel E. Freedman,Emiko C. Gardiner,Nate Garver-Daniels,Peter A. Gentile,Kyle A. Gersbach,Joseph Glaser,Deborah C. Good,Kayhan Gültekin,Jeffrey S. Hazboun,Ross J. Jennings,Aaron D. Johnson,Megan L. Jones,David L. Kaplan,Luke Zoltan Kelley,Matthew Kerr,Joey S. Key,Nima Laal,Michael T. Lam,William G. Lamb, Bjorn Larsen,T. Joseph W. Lazio,Natalia Lewandowska, Rafael R. Lino dos Santos,Tingting Liu,Duncan R. Lorimer,Jing Luo, Ryan S. Lynch,Chung-Pei Ma,Dustin R. Madison,Alexander McEwen,James W. McKee,Maura A. McLaughlin,Natasha McMann,Bradley W. Meyers,Patrick M. Meyers,Chiara M. F. Mingarelli,Andrea Mitridate, Cherry Ng, David J. Nice,Stella Koch Ocker, Ken D. Olum,Timothy T. Pennucci,Benetge B. P. Perera,Nihan S. Pol,Henri A. Radovan,Scott M. Ransom, Paul S. Ray,Joseph D. Romano, Jessie C. Runnoe,Alexander Saffer,Shashwat C. Sardesai,Ann Schmiedekamp,Carl Schmiedekamp, Kai Schmitz, Tobias Schröder,Brent J. Shapiro-Albert,Xavier Siemens,Joseph Simon,Magdalena S. Siwek,Sophia V. Sosa Fiscella,Ingrid H. Stairs, Daniel R. Stinebring,Kevin Stovall,Abhimanyu Susobhanan,Joseph K. Swiggum, Stephen R. Taylor,Jacob E. Turner,Caner Unal,Michele Vallisneri,Rutger van Haasteren,Sarah J. Vigeland,Richard von Eckardstein,Haley M. Wahl,Caitlin A. Witt,David Wright,Olivia Young

arxiv(2024)

引用 0|浏览14
暂无评分
摘要
The NANOGrav 15-year data provides compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists in a simple power-law fit involving two parameters: an amplitude A and a spectral index γ. In this paper, we consider the next logical step beyond this minimal spectral model, allowing for a running (i.e., logarithmic frequency dependence) of the spectral index, γ_run(f) = γ+ βln(f/f_ref). We fit this running-power-law (RPL) model to the NANOGrav 15-year data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95 the parameter βconsistent with no running, β∈[-0.80,2.96], and an inconclusive Bayes factor, B(RPL vs. CPL) = 0.69 +- 0.01. We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzero β. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from big-bang nucleosynthesis, the cosmic microwave background, and LIGO-Virgo-KAGRA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要