Twist, turn and encounter: the trajectories of small atmospheric particles unravelled

Taraprasad Bhowmick,Yong Wang, Jonas Latt, Gholamhossein Bagheri

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Every solid particle in the atmosphere, from ice crystals and pollen to dust, ash, and microplastics, is non-spherical. These particles play significant roles in Earth's climate system, influencing temperature, weather patterns, natural ecosystems, human health, and pollution levels. However, our understanding of these particles is largely based on the theories for extremely small particles and experiments conducted in liquid mediums. In this study, we used an innovative experimental setup and particle-resolved numerical simulations to investigate the behaviour of sub-millimetre ellipsoids of varying shapes in the air. Our results revealed complex decaying oscillation patterns involving numerous twists and turns in these particles, starkly contrasting their dynamics in liquid mediums. We found that the frequency and decay rate of these oscillations have a strong dependence on the particle shape. Interestingly, disk-shaped particles oscillated at nearly twice the frequency of rod-shaped particles, though their oscillations also decayed more rapidly. During oscillation, even subtly non-spherical particles can drift laterally up to ten times their volume-equivalent spherical diameter. This behaviour enables particles to sweep through four times more air both vertically and laterally compared to a volume-equivalent sphere, significantly increasing their encounter rate and aggregation possibility. Our findings provide an explanation for the long-range transport and naturally occurring aggregate formation of highly non-spherical particles such as snowflakes and volcanic ash.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要