GDF10 is a Negative Regulator of Vascular Calcification

The Journal of biological chemistry(2024)

引用 0|浏览5
暂无评分
摘要
Cardiovascular mortality is particularly high and increasing in patients with chronic kidney disease, with vascular calcification (VC) a major pathophysiologic feature. VC is a highly regulated biological process similar to bone formation involving osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). We have previously demonstrated that loss of T-cell death associated gene 51 (TDAG51) expression leads to an attenuation of medial VC. We now show a significant induction of circulating levels of growth differentiation factor 10 (GDF10) in TDAG51-/- mice, which was of interest due to its established role as an inhibitor of osteoblast differentiation. The objective of this study was to examine the role of GDF10 in the osteogenic transdifferentiation of VSMCs. Using primary mouse and human VSMCs, as well as ex vivo aortic ring cultures, we demonstrated that treatment with recombinant human (rh) GDF10 mitigated phosphate-mediated hydroxyapatite (HA) mineral deposition. Furthermore, ex vivo aortic rings from GDF10-/- mice exhibited increased HA deposition compared to C57BL/6J controls. To explain our observations, we identified that rhGDF10 treatment reduced protein expression of runt-related transcription factor 2, a key driver of osteogenic transdifferentiation of VSMCs and VC. In support of these findings, in vivo treatment with rhGDF10 attenuated VD3-induced VC. Furthermore, we demonstrated an increase in circulating GDF10 in patients with chronic kidney disease with clinically defined severe VC, as assessed by coronary artery calcium score. Thus, our studies identify GDF10 as a novel inhibitor of mineral deposition and as such, may represent a potential novel biomarker and therapeutic target for the detection and management of VC.
更多
查看译文
关键词
cardiovascular disease,vascular smooth muscle cells,bone morphogenic protein (BMP),calcification,vascular biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要