Multiscale Quantile Segmentation

Journal of the American Statistical Association(2021)

引用 12|浏览27
暂无评分
摘要
Abstract We introduce a new methodology for analyzing serial data by quantile regression assuming that the underlying quantile function consists of constant segments. The procedure does not rely on any distributional assumption besides serial independence. It is based on a multiscale statistic, which allows to control the (finite sample) probability for selecting the correct number of segments S at a given error level, which serves as a tuning parameter. For a proper choice of this parameter, this probability tends exponentially fast to one, as sample size increases. We further show that the location and size of segments are estimated at minimax optimal rate (compared to a Gaussian setting) up to a log-factor. Thereby, our approach leads to (asymptotically) uniform confidence bands for the entire quantile regression function in a fully nonparametric setup. The procedure is efficiently implemented using dynamic programming techniques with double heap structures, and software is provided. Simulations and data examples from genetic sequencing and ion channel recordings confirm the robustness of the proposed procedure, which at the same time reliably detects changes in quantiles from arbitrary distributions with precise statistical guarantees. Supplementary materials for this article are available online.
更多
查看译文
关键词
Change-points,Double heap,Dynamic programming,Multiscale methods,Quantile regression,Robust segmentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要