The SNO+ Experiment

SNO+ Collaboration, V. Albanese,R. Alves,M. R. Anderson,S. Andringa,L. Anselmo,E. Arushanova,S. Asahi,M. Askins,D. J. Auty,A. R. Back, S. Back,F. Barão,Z. Barnard,A. Barr,N. Barros,D. Bartlett,R. Bayes, C. Beaudoin,E. W. Beier, G. Berardi,A. Bialek,S. D. Biller,E. Blucher,R. Bonventre,M. Boulay,D. Braid,E. Caden,E. J. Callaghan,J. Caravaca,J. Carvalho,L. Cavalli,D. Chauhan,M. Chen,O. Chkvorets,K. J. Clark,B. Cleveland,C. Connors,D. Cookman,I. T. Coulter,M. A. Cox,D. Cressy,X. Dai,C. Darrach,B. Davis-Purcell,C. Deluce,M. M. Depatie, F. Descamps,F. Di Lodovico,J. Dittmer, A. Doxtator,N. Duhaime,F. Duncan, J. Dunger,A. D. Earle,D. Fabris,E. Falk, A. Farrugia,N. Fatemighomi, C. Felber,V. Fischer,E. Fletcher,R. Ford,K. Frankiewicz,N. Gagnon,A. Gaur, J. Gauthier,A. Gibson-Foster,K. Gilje,O. I. González-Reina,D. Gooding,P. Gorel,K. Graham,C. Grant,J. Grove,S. Grullon,E. Guillian, S. Hall,A. L. Hallin,D. Hallman,S. Hans,J. Hartnell,P. Harvey,M. Hedayatipour,W. J. Heintzelman,J. Heise,R. L. Helmer, B. Hodak, M. Hodak, M. Hood,D. Horne,B. Hreljac, J. Hu,S. M. A. Hussain,T. Iida,A. S. Inácio,C. M. Jackson,N. A. Jelley,C. J. Jillings,C. Jones,P. G. Jones,K. Kamdin,T. Kaptanoglu,J. Kaspar,K. Keeter,C. Kefelian,P. Khaghani,L. Kippenbrock,J. R. Klein,R. Knapik,J. Kofron,L. L. Kormos,S. Korte,B. Krar,C. Kraus,C. B. Krauss,T. Kroupová,K. Labe, F. Lafleur,I. Lam,C. Lan,B. J. Land, R. Lane,S. Langrock, P. Larochelle, S. Larose,A. LaTorre,I. Lawson,L. Lebanowski,G. M. Lefeuvre,E. J. Leming,A. Li,O. Li,J. Lidgard,B. Liggins,P. Liimatainen,Y. H. Lin,X. Liu,Y. Liu,V. Lozza,M. Luo,S. Maguire,A. Maio,K. Majumdar,S. Manecki,J. Maneira,R. D. Martin,E. Marzec,A. Mastbaum, A. Mathewson,N. McCauley,A. B. McDonald,K. McFarlane,P. Mekarski,M. Meyer,C. Miller,C. Mills,M. Mlejnek,E. Mony,B. Morissette,I. Morton-Blake,M. J. Mottram,S. Nae,M. Nirkko,L. J. Nolan,V. M. Novikov,H. M. O'Keeffe,E. O'Sullivan,G. D. Orebi Gann,M. J. Parnell,J. Paton,S. J. M. Peeters,T. Pershing,Z. Petriw,J. Petzoldt,L. Pickard,D. Pracsovics,G. Prior,J. C. Prouty,S. Quirk, S. Read,A. Reichold,S. Riccetto,R. Richardson,M. Rigan, I. Ritchie,A. Robertson,B. C. Robertson,J. Rose,R. Rosero,P. M. Rost,J. Rumleskie,M. A. Schumaker,M. H. Schwendener,D. Scislowski,J. Secrest,M. Seddighin,L. Segui,S. Seibert,I. Semenec,F. Shaker,T. Shantz,M. K. Sharma,T. M. Shokair,L. Sibley,J. R. Sinclair,K. Singh,P. Skensved,M. Smiley,T. Sonley,A. Sörensen, M. St-Amant,R. Stainforth, S. Stankiewicz,M. Strait,M. I. Stringer,A. Stripay,R. Svoboda,S. Tacchino,B. Tam, C. Tanguay,J. Tatar,L. Tian,N. Tolich,J. Tseng,H. W. C. Tseung,E. Turner,R. Van Berg,E. Vázquez-Jáuregui,J. G. C. Veinot,C. J. Virtue,B. von Krosigk,J. M. G. Walker,M. Walker,J. Wallig,S. C. Walton,J. Wang,M. Ward,O. Wasalski,J. Waterfield,J. J. Weigand,R. F. White,J. R. Wilson,T. J. Winchester,P. Woosaree,A. Wright,J. P. Yanez,M. Yeh,T. Zhang,Y. Zhang,T. Zhao,K. Zuber,A. Zummo

Springer Theses Event Classification in Liquid Scintillator Using PMT Hit Patterns(2019)

Cited 24|Views50
No score
Abstract
The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta (0νββ) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of 130Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for 0νββ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for 0νββ decay is scalable: a future phase with high 130Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region.
More
Translated text
Key words
Time Projection Chambers
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined