GHS-R1a Deficiency Mitigates Lipopolysaccharide-Induced Lung Injury in Mice Via the Downregulation of Macrophage Activity.

Biochemical and biophysical research communications(2022)

引用 1|浏览25
暂无评分
摘要
Acute respiratory distress syndrome (ARDS) is a critical illness syndrome characterized by dysregulated pulmonary inflammation. Currently, effective pharmacological treatments for ARDS are unavailable. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHS-R1a), has a pivotal role in regulating energy metabolism and immunomodulation. The role of endogenous ghrelin in ARDS remains unresolved. Herein, we investigated the role of endogenous ghrelin signaling by using GHS-R1a-null (ghsr-/-) mice and lipopolysaccharide (LPS)-induced ARDS model. Ghsr-/- mice survived longer than controls after LPS-induced lung injury. Ghsr-/- mice showed lower levels of pro-inflammatory cytokines and higher oxygenation levels after lung injury. The peritoneal macrophages isolated from ghsr-/- mice exhibited lower levels of cytokines production and oxygen consumption rate after LPS stimulation. Our results indicated that endogenous ghrelin plays a pivotal role in initiation and continuation in acute inflammatory response in LPS-induced ARDS model by modulating macrophage activity, and highlighted endogenous GHS-R1a signaling in macrophage as a potential therapeutic target in this relentless disease.
更多
查看译文
关键词
Ghrelin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要