Bearings-Only Guidance in Cis-Lunar Rendezvous

Journal of guidance, control, and dynamics(2021)

引用 1|浏览5
暂无评分
摘要
No AccessEngineering NotesBearings-Only Guidance in Cis-Lunar RendezvousFabio D’Onofrio, Giordana Bucchioni and Mario InnocentiFabio D’OnofrioUniversity of Pisa, 56122 Pisa, Italy*Graduate Student, Department of Information Engineering, Via Caruso 16; .Search for more papers by this author, Giordana BucchioniUniversity of Pisa, 56122 Pisa, Italy†Ph.D. Candidate, Department of Information Engineering, Via Caruso 16; .Search for more papers by this author and Mario InnocentiUniversity of Pisa, 56122 Pisa, Italy‡Professor, Department of Information Engineering, Via Caruso 16; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:21 Jul 2021https://doi.org/10.2514/1.G005978SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Renk F., Landgraf M. and Bucci L., “Refined Mission Analysis for Heracles—A Robotic Lunar Surface Sample Return Mission Utilizing Human Infrastructure,” 2018 AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 18-344, 2018. Google Scholar[2] Zimovan E., Howell K. and Davis D. C., “Near Rectilinear Halo Orbits and Their Application in Cis-Lunar Space,” 3rd IAA Conference on Dynamics and Controls of Space Systems, Paper IAA-AAS-DyCoSS3-125, 2017. Google Scholar[3] Fehse W., Automated Rendezvous and Docking of Spacecraft, Cambridge Aerospace Series, Cambridge Univ. Press, Cambridge, England, U.K., 2003, pp. 31–32. https://doi.org/10.1017/CBO9780511543388 CrossrefGoogle Scholar[4] Gaias G. and Ardaens J.-S., “Flight Demonstration of Autonomous Noncooperative Rendezvous in Low Earth Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1337–1354. https://doi.org/10.2514/1.G003239 LinkGoogle Scholar[5] Sanchez H., McIntosh D., Cannon H., Pires C., Field M., Sullivan J., D’Amico S., Mall L. and O’Connor B., “Starling-1: Swarm Technology Demonstration,” 32nd AIA/USU Conference on Small Satellites, Paper SSC18-VII-08, Utah State Univ., Logan, UT, 2018. Google Scholar[6] Woffinden D. C. and Geller D. K., “Observability Criteria for Angles-Only Navigation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 3, 2009, pp. 1194–1208. https://doi.org/10.1109/TAES.2009.5259193 CrossrefGoogle Scholar[7] Grzymisch J. and Fichter W., “Observability Criteria and Unobservable Maneuvers for In-Orbit Bearings-Only Navigation,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 4, 2014, pp. 1250–1259. https://doi.org/10.2514/1.62476 LinkGoogle Scholar[8] Clohessy W. H. and Wiltshire R. S., “Terminal Guidance System for Satellite Rendezvous,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 9, 1960, pp. 653–658. https://doi.org/10.2514/8.8704 Google Scholar[9] Luo J., Gong B., Yuan J. and Zhang Z., “Angles-Only Relative Navigation and Closed-Loop Guidance or Spacecraft Proximity Operations,” Acta Astronautica, Vol. 128, Nov. 2016, pp. 91–106. https://doi.org/10.1016/j.actaastro.2016.06.032 CrossrefGoogle Scholar[10] Tschauner J. and Hempel P., “Rendezvous zu Einem in Elliptischer Bahn Umlaufenden Ziel [Rendezvous with a Target in an Elliptical Orbit],” Acta Astronautica, Vol. 11, No. 2, 1965, pp. 104–109. Google Scholar[11] Woffinden D. C. and Geller D. K., “Optimal Orbital Rendezvous Maneuvering for Angles-Only Navigation,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 4, 2009, pp. 1382–1387. https://doi.org/10.2514/1.45006 LinkGoogle Scholar[12] Grzymisch J. and Fichter W., “Analytic Optimal Observability Maneuvers for In-Orbit Bearings-Only Rendezvous,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1658–1664. https://doi.org/10.2514/1.G000612 LinkGoogle Scholar[13] Grzymisch J. and Fichter W., “Optimal Rendezvous Guidance with Enhanced Bearings-Only Observability,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1131–1140. https://doi.org/10.2514/1.G000822 LinkGoogle Scholar[14] Franzini G. and Innocenti M., “Relative Motion Dynamics in the Restricted Three-Body Problem,” Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1322–1337. https://doi.org/10.2514/1.A34390 LinkGoogle Scholar[15] Koon W. S., Lo M. W., Marsden J. E. and Ross S. D., Dynamical Systems, the Three-Body Problem, and Space Mission Design, CALTECH, Pasadena, CA, 2011, Chap. 2. Google Scholar[16] Qian Y., Yang X., Jing W. and Zhang W., “An Improved Numerical Method for Constructing Halo/Lissajous Orbits in a Full Solar System Model,” Chinese Journal of Aeronautics, Vol. 31, No. 6, 2018, pp. 1362–1374. https://doi.org/10.1016/j.cja.2018.03.006 CrossrefGoogle Scholar[17] Bucci L., Lavagna M. and Renk F., “Relative Dynamics Analysis and Rendezvous Techniques for Lunar Near Rectilinear Halo Orbits,” Proceedings of 68th International Astronautical Congress (IAC 2017), Vol. 12, International Astronautical Federation (IAF), Adelaide, Australia, 2017, pp. 7645–7654. Google Scholar[18] Sullivan J., Grimberg S. and D’Amico S., “Comprehensive Survey and Assessment of Spacecraft Relative Motion Dynamics Models,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 8, 2017, pp. 1837–1859. https://doi.org/10.2514/1.G002309 LinkGoogle Scholar[19] Mohanty N. C., “Autonomous Navigation for High Altitude Satellites,” Information Sciences, Vol. 30, No. 2, 1983, pp. 125–150. https://doi.org/10.1016/0020-0255(83)90003-8 CrossrefGoogle Scholar[20] Sullivan J. and D’Amico S., “Nonlinear Kalman Filtering for Improved Angles-Only Navigation Using Relative Orbital Elements,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 9, 2017, p. 2183–2200. https://doi.org/10.2514/1.G002719 LinkGoogle Scholar[21] D’Onofrio F., Bucchioni G. and Innocenti M., “Bearings-Only Guidance for Rendezvous in a Cis-Lunar NRHO,” 31st AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 21-209, 2021. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 44, Number 10October 2021 CrossmarkInformationCopyright © 2021 by Fabio D’Onofrio, Giordana Bucchioni, Mario Innocenti. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAir NavigationAstronomyCelestial MechanicsControl TheoryGuidance and Navigational AlgorithmsGuidance, Navigation, and Control SystemsKalman FilterKepler's Laws of Planetary MotionPlanetary Science and ExplorationPlanetsSpace MissionsSpace Science and TechnologySpacecraft GuidanceSpacecraft Guidance and Control KeywordsNear Rectilinear Halo OrbitNavigation AlgorithmEarthNon Keplerian OrbitUnscented Kalman FilterModel Predictive ControlFuel ConsumptionGuidance SystemOptimization AlgorithmOrbital Station KeepingAcknowledgmentThis work was partially supported by the European Space Agency under contract number 000121575/17/NL/hh. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.PDF Received10 February 2021Accepted26 May 2021Published online21 July 2021
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要