Machine Learning Prediction of Chronic Diabetes Based on Person's Demography and Lifestyle Information

Satyajit Behari,Asish Satpathy

International Journal of Data Science(2022)

引用 0|浏览2
暂无评分
摘要
Chronic diseases such as diabetes are prevalent globally and responsible for many deaths yearly. In addition, treatments for such chronic diseases account for a high healthcare cost. However, research has shown that diabetes can be proactively managed and prevented while lowering healthcare costs. We have mined a sample of ten million customers' 360° insight that includes behavioural, demographic, and lifestyle information, representing the state of Texas, USA, with attributes current as of late 2018. The sample, obtained from a market research data vendor, has over 1000 customer attributes consisting of behavioural, demographic, lifestyle, and, in some cases, self-reported chronic conditions such as diabetes or hypertension. In this study, we have developed a classification model to predict chronic diabetes with an accuracy of 80%. In addition, we demonstrate a use case where a large volume of customers' 360° data can be helpful to predict and hence proactively prevent and manage a person's chronic diabetes. Customer and person are both used interchangeably throughout the paper.
更多
查看译文
关键词
Heart Disease Prediction,Diabetes,Medical Diagnosis,Logistic Regression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要