Jailbreaking ChatGPT via Prompt Engineering: An Empirical Study
arxiv(2023)
摘要
Large Language Models (LLMs), like ChatGPT, have demonstrated vast potential
but also introduce challenges related to content constraints and potential
misuse. Our study investigates three key research questions: (1) the number of
different prompt types that can jailbreak LLMs, (2) the effectiveness of
jailbreak prompts in circumventing LLM constraints, and (3) the resilience of
ChatGPT against these jailbreak prompts. Initially, we develop a classification
model to analyze the distribution of existing prompts, identifying ten distinct
patterns and three categories of jailbreak prompts. Subsequently, we assess the
jailbreak capability of prompts with ChatGPT versions 3.5 and 4.0, utilizing a
dataset of 3,120 jailbreak questions across eight prohibited scenarios.
Finally, we evaluate the resistance of ChatGPT against jailbreak prompts,
finding that the prompts can consistently evade the restrictions in 40 use-case
scenarios. The study underscores the importance of prompt structures in
jailbreaking LLMs and discusses the challenges of robust jailbreak prompt
generation and prevention.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要