The epidemiological and clinical characteristics of COVID-19 in a high HIV/TB burden district level hospital setting

crossref(2022)

Cited 0|Views11
No score
Abstract
Abstract Background: The coronavirus disease 2019 (COVID-19) pandemic continues to evolve. Globally, COVID-19 continues to strain even the most resilient healthcare systems, with Omicron being the latest variant. We made a thorough search for literature describing the effects of the COVID-19 in a high human immunodeficiency virus (HIV)/tuberculosis (TB) burden district-level hospital setting. We found scanty literature. Methods: A retrospective observational study was conducted at Khayelitsha District Hospital in Cape Town, South Africa (SA) over the period March 2020 – December 2021. We included confirmed COVID-19 cases with HIV infection aged from 18 years and above. Analysis was performed to identify predictors of mortality or hospital discharge among people living with HIV (PLWH). Predictors investigated include CD4 count, antiretroviral therapy (ART), TB, non-communicable diseases, haematological, and biochemical parameters. Findings: This cohort of PLWH with SARS-CoV-2 infection had a median (IQR) age of 46 (37–54) years, male sex distribution of 29.1%, and a median (IQR) CD4 count of 267 (141–457) cells/mm3. Of 255 patients, 195 (76%) patients were discharged, 60 (24%) patients died. One hundred and sixty-nine patients (88%) were on ART with 73(28%) patients having acquired immunodeficiency syndrome (AIDS). After multivariate analysis, smoking (risk ratio [RR]: 2.86 (1.75–4.69)), neutrophilia [RR]: 1.024 (1.01–1.03), and glycated haemoglobin A1 (HbA1c) [RR]: 1.01 (1.007–1.01) were associated with mortality. Conclusion: The district hospital had a high COVID-19 mortality rate among PLWH. Easy-to-access biomarkers such as CRP, neutrophilia, and HbA1c may play a significant role in informing clinical management to prevent high mortality due to COVID-19 in PLWH at the district-level hospitals.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined