Digger: Detecting Copyright Content Mis-usage in Large Language Model Training

CoRR(2024)

引用 0|浏览46
暂无评分
摘要
Pre-training, which utilizes extensive and varied datasets, is a critical factor in the success of Large Language Models (LLMs) across numerous applications. However, the detailed makeup of these datasets is often not disclosed, leading to concerns about data security and potential misuse. This is particularly relevant when copyrighted material, still under legal protection, is used inappropriately, either intentionally or unintentionally, infringing on the rights of the authors. In this paper, we introduce a detailed framework designed to detect and assess the presence of content from potentially copyrighted books within the training datasets of LLMs. This framework also provides a confidence estimation for the likelihood of each content sample's inclusion. To validate our approach, we conduct a series of simulated experiments, the results of which affirm the framework's effectiveness in identifying and addressing instances of content misuse in LLM training processes. Furthermore, we investigate the presence of recognizable quotes from famous literary works within these datasets. The outcomes of our study have significant implications for ensuring the ethical use of copyrighted materials in the development of LLMs, highlighting the need for more transparent and responsible data management practices in this field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要