A Data-Efficient Deep Transfer Learning Framework for Methane Super-Emitter Detection in Oil and Gas Fields Using Sentinel-2 Satellite
crossref(2024)
摘要
Abstract. Efficiently detecting large methane point sources (super-emitters) in oil and gas fields is crucial for informing stakeholders for mitigation actions. Satellite measurements by multispectral instruments, such as Sentinel-2, offer global and frequent coverage. However, methane signals retrieved from satellite multispectral images are prone to surface and atmospheric artifacts that vary spatially and temporally, making it challenging to build a detection algorithm that applies everywhere. Hence, laborious manual inspection is often necessary, hindering widespread deployment of the technology. Here, we propose a novel deep-transfer-learning-based methane plume detection framework. It consists of two components: an adaptive artifact removal algorithm (low reflectance artifact detection, LRAD) to reduce artifacts in methane retrievals, and a deep subdomain adaptation network (DSAN) to detect methane plumes. To train the algorithm, we compile a dataset comprising 1627 Sentinel-2 images from 6 known methane super-emitters reported in the literatures. We evaluate the ability of the algorithm to discover new methane sources with a suite of transfer tasks, in which training and evaluation data come from different regions. Results show that the DSAN (average macro-F1 score 0.86) outperforms two convolutional neural networks (CNN), MethaNet (average macro-F1 score 0.7) and ResNet-50 (average macro-F1 score 0.77), in transfer tasks. The transfer-learning algorithm overcomes the issue of conventional CNNs that their performance degrades substantially in regions outside training data. We apply the algorithm trained with known sources to an unannotated region in the Algerian Hassi Messaoud oil field and reveal 34 anomalous emission events during a one-year period, which are attributed to 3 methane super-emitters associated with production and transmission infrastructure. These results demonstrate the potential of our deep-transfer-learning-based method towards efficient methane super-emitter discovery using Sentinel-2 across different oil and gas fields worldwide.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要