Enhancing Untargeted Metabolomics Using Metadata-Based Source Annotation
Nature biotechnology(2022)
摘要
Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.
更多查看译文
关键词
Data processing,Databases,Mass spectrometry,Metabolomics,Life Sciences,general,Biotechnology,Biomedicine,Agriculture,Biomedical Engineering/Biotechnology,Bioinformatics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要