Effects of Spin-Orbit Coupling and Thermal Expansion on the Phonon-limited Resistivity of Pb from First Principles

Félix Antoine Goudreault, Samuel Poncé,Feliciano Giustino, Michel Côté

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Using density functional theory calculations with spin-orbit coupling (SOC), we report on the temperature-dependent thermodynamical properties of Pb: electrical resistivity, thermal expansion (TE), heat capacity, bulk modulus and its pressure derivative. For the former, we employed the state-of-the-art ab initio Boltzmann Transport Equation formalism, and we calculated the effect of TE. In accordance with previous work, we show that SOC improves the description of the phonon dispersion and the resistivity. We argue that this is caused by a joint mutual effect of an increase in the electronic nesting and an increase in the electron-phonon coupling. Interestingly, including TE incorporates non-linearity into the resistivity at high temperatures, whose magnitude depends on whether SOC is included or not. We suggest that mechanisms beyond the quasi-harmonic approximation should be considered to get a better description of Pb with SOC at high temperatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要